Approximating the Independence Number and the Chromatic Number in Expected Polynominal Time
نویسندگان
چکیده
The independence number of a graph and its chromatic number are known to be hard to approximate. Due to recent complexity results, unless coRP = NP , there is no polynomial time algorithm which approximates any of these quantities within a factor of n1−2 for graphs on n vertices. We show that the situation is significantly better for the average case. For every edge probability p = p(n) in the range n−1/2+2 ≤ p ≤ 3/4, we present an approximation algorithm for the independence number of graphs on n vertices, whose approximation ratio is O((np)/ log n) and whose expected running time over the probability space G(n, p) is polynomial. An algorithm with similar features is described also for the chromatic number. A key ingredient in the analysis of both algorithms is a new large deviation inequality for eigenvalues of random matrices, obtained through an application of Talagrand’s inequality.
منابع مشابه
Computing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملApproximating Maximum Independent Sets in Uniform Hypergraphs
We consider the problem of approximating the independence number and the chromatic number of k-uniform hypergraphs on n vertices. For xed integers k 2, we obtain for both problems that one can achieve in polynomial time approximation ratios of at most O(n=(log 1) n)2). This extends results of Boppana and Halld orsson [5] who showed for the graph case that an approximation ratio of O(n=(logn)) c...
متن کاملSOME GRAPH PARAMETERS ON THE COMPOSITE ORDER CAYLEY GRAPH
In this paper, the composite order Cayley graph Cay(G, S) is introduced, where G is a group and S is the set of all composite order elements of G. Some graph parameters such as diameter, girth, clique number, independence number, vertex chromatic number and domination number are calculated for the composite order Cayley graph of some certain groups. Moreover, the planarity of composite order Ca...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملApproximating Vizing's independence number conjecture
In 1965, Vizing conjectured that the independence ratio of edge-chromatic critical graphs is at most 1 2 . We prove that for every > 0 this conjecture is equivalent to its restriction on a specific set of edge-chromatic critical graphs with independence ratio smaller than 1 2 + .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 6 شماره
صفحات -
تاریخ انتشار 2000